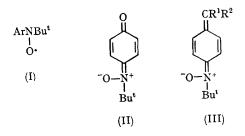
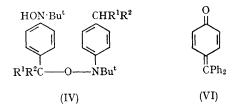
The Stability of Aryl-t-butylnitroxides

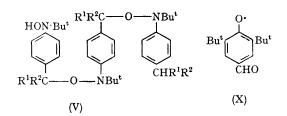
By A. CALDER and A. R. FORRESTER* (Department of Chemistry, University of Aberdeen)

We have shown previously¹ that phenyl-t-butylnitroxide (I; Ar=Ph) spontaneously disproportionates during isolation to the corresponding secondary amine and quinone-imine N-oxide (II). The present report deals with the relative stabilities and mechanism of decomposition of a number of alkyl-substituted phenyl-t-butylnitroxides prepared by treatment of t-nitrosobutane with the appropriate aryl Grignard reagent and oxidation of the hydroxylamine so formed.

Stable, isolable aryl-t-butylnitroxides were obtained when: (i) the *para*-position was blocked by a t-butyl or phenyl group; (ii) the *para*-position

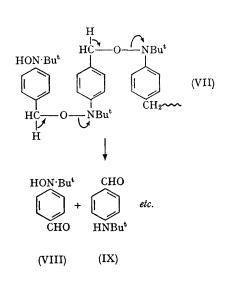

was sterically hindered by two *meta*-methyl substituents (with one *meta*-methyl group the rate of disproportionation merely decreased); (iii) the aryl group was twisted out of conjugation with the nitrogen atom to some extent by one or two *ortho*-methyl substituents, unpaired electron density at the *para*-position being reduced as a result.[†]


p-Ethyl- and *p*-isopropyl-phenyl-t-butylnitroxides (I; Ar = p-EtC₆H₄ and p-Pr¹C₆H₄) were not sufficiently stable to be isolated. In concentrated solution they disproportionated rapidly to the corresponding hydroxylamines and methide *N*oxides (III; R¹=H, R²=Me and R¹=R²=Me)


[†] Stable alkylarylnitroxides are also obtained when the t-alkyl group is large as in phenyl-trans-decalylnitroxide (ref. 2) and the Banfield and Kenyon radical (ref. 3).

	Hyperfine coupling constants (in gauss ± 0.1) of aryi-t-butylnitroxides (1)										
Ar						$a_{ m N}$	а _{о-н}	a_{p-H}	a_{m-H}	$a_{ extsf{substituent}}$	
Ph						12.30	2.05	2.05	1.00		
p-Me·C ₆H₄	• •		••			12.75	1.90		0.95	$a_{\rm H} = 1.90$	
p-Et·C ₆ H ₄	••			••		12.45	1.95*		1.00*	$a_{\rm H} = 1.60*$	
p-Pr ⁱ ·C ₆ H ₄	••		••	••		12.50	1.90		0.95	$a_{\rm H} = 0.95$	
p-PhCH ₂ ·Č ₆ H	4 • •	••	••	••		12.30	$2 \cdot 10$		1.00	$a_{\rm H}=1.60$	
p-Ph2CH·C6H	4 • •	••	••	••	• •	12.15	$2 \cdot 10$		1.05	$a_{\rm H} = 1.65$	
p-Me ₃ C·C ₆ H ₄	••	••	••	••	••	$12 \cdot 40$	$2 \cdot 20$		1.00		
p-Ph·C ₆ H ₄	••	••	•••	••	• •	11.90	2.50		1.10		
$m-\text{MeC}_{6}H_{4}$	••	••	••	••	••	12.60	1.95	1.95	0.65	$a_{\rm H}=0.65$	
3,5-Me ₂ ·C ₆ H ₃	••	••		• •	• •	12.70	1.80	1.80		$a_{\rm H}=0.60$	
o-Me·C ₆ H ₄	••	••		••	• •	13.50	each compo	nent of the tri	plet had abou	t 22 narrowly	
							spaced lines				
$2,6-\mathrm{Me_2C_6H_3}$	••	••	••	••	••	13.40	each compo	nent of the trij		t 28 narrowly	
							spaced lines				
p-OHC·C ₆ H ₄	••	••	••	• •	••	10.80	2.35		0.95		
Dimer (IV; R			••	••	••	12.25	1.95		1.00	$a_{\rm H} = 1.00$	
Dimer (IV; R			••	••	••	12.20	1.90		0.95		
Dimer (IV; R			• •	••	••	12.10	2.00		1.00	$a_{\rm H} = 1.00$	
Trimer (V; R	=H,R	$^2 = Ph$	••	• •	• •	12.15	1.95		0.95	$a_{\rm H} = 1.00$	

* Provisional values.



which combined readily to give the dimers (IV; $R^1=H$, $R^2=Me$ and $R^1=R^2=Me$). *p*-Benzylphenyl-t-butylnitroxide (I; Ar=p-PhCH₂·C₆H₄) decomposed to a mixture of dimer (IV; $R^1=H$, $R^2=Ph$) and trimer (V; $R^1=H, R^2=Ph$). In this case the intermediate methide (III; $R^1=H, R^2=Ph$) is longer-lived and adds both monomeric and dimeric hydroxyl amines. The methide from p-diphenylmethylphenyl-t-butylnitroxide (I; $Ar=Ph_2CH\cdot C_6H_4$) was even more stable and could be isolated from the decomposition mixture; in

the presence of light it decomposed to fuchsone⁴ (VI). The structures assigned to the dimers and trimer were based on analytical, molecular weight (osmometric), i.r., n.m.r., (Ar·CH·O· absorption in the region τ 6·0) and chemical evidence (all gave a positive hydroxylamine-tetrazolium test⁵). In

TABLE

Hyperfine coupling constants (in gauss ± 0.1) of aryl-t-butylnitroxides (I)

addition, the e.s.r. spectra of the nitroxides formed from these hydroxylamines showed coupling with one proton less than those of the parent nitroxides (see Table).

The decomposition of t-butyl-p-tolylnitroxide (I; $Ar = p - Me \cdot C_{g}H_{4}$) was more complicated and gave a complex mixture of products from which the parent hydroxylamine, and the aldehydes (VIII) and (IX) (as the 2,4-dinitrophenylhydrazone) were isolated. These products probably arise by degradation of polymeric hydroxylamines (VII) formed by self-condensation of the highly reactive methide (III; $R^1 = R^2 = H$) (cf., the polymerization of p-benzoquinonemethide⁶).

Details of the e.s.r. spectra of the nitroxides, measured in carbon tetrachloride solution, are given in the Table. The a_N values of orthosubstituted radicals were predictably higher than those of the others but no major splitting due to the protons of the ortho-methyl group was detected. Thus the quartet splitting observed in the spectrum of phenyl-o-tolylnitroxide and attributed⁷ to a "through space" coupling with the ortho-methyl protons almost certainly results from equal interaction of the unpaired electron with the orthoand para-protons of the unsubstituted ring. The spectrum obtained from the aldehydic nitroxide (I; $Ar = p - OCH \cdot C_6 H_4$) differed considerably from that previously attributed⁸ to this radical, showing only a very small coupling with the aldehydic proton [cf., the spectrum of the phenoxyl (X)].⁹

(Received, May 15th, 1967; Com. 477.)

- ¹ A. R. Forrester and R. H. Thomson, Nature, 1964, 203, 74.
- ² W. Hückel and W. Liegel, Ber., 1938, 71, 1442.
- ³ F. H. Banfield and J. Kenyon, J. Chem. Soc., 1926, 1612.
 ⁴ C. J. Pedersen, J. Amer. Chem. Soc., 1957, 79, 2295.
 ⁵ G. A. Snow, J. Chem. Soc., 1954, 2588.

- ⁶ K. Freudenberg and H. K. Werner, Chem. Ber., 1964, 97, 579.
- ⁷ Y. Deguchi, Bull. Chem. Soc. Japan, 1962, 35, 260.
 ⁸ H. Lemaire, Y. Marechal, R. Ramasseul, and A. Rassat, Bull. Soc. chim. France, 1965, 372.
- ⁹ J. K. Becconsall, S. Clough, and G. Scott, Trans. Faraday Soc., 1960, 56, 459.